钾离子电池由于其低成本,电解液中快的离子传导性以及高的工作电压近年来引起了极大的关注。然而,对钾离子电池的研究仍处于起步阶段,对各组分(电极材料和电解液)存在的问题进行深入了解以及提出克服这些问题的研究策略对于进一步探索合适的电极材料和发展钾离子电池技术至关重要。(来源:微信公众

首页 > 储能 > 储能电池 > 锂电池 > 评论 > 正文

全面了解钾离子电池 从郭再萍教授最新Science Advances综述入手!

2019-05-17 11:25 来源: 纳米人 作者: 郭再萍教授课题组

钾离子电池由于其低成本,电解液中快的离子传导性以及高的工作电压近年来引起了极大的关注。然而,对钾离子电池的研究仍处于起步阶段,对各组分(电极材料和电解液)存在的问题进行深入了解以及提出克服这些问题的研究策略对于进一步探索合适的电极材料和发展钾离子电池技术至关重要。

(来源:微信公众号“纳米人”ID:namiren 作者:郭再萍教授课题组)

鉴于此,澳大利亚卧龙岗大学郭再萍课题组系统介绍了钾离子电池的最新研究进展。着重总结了目前在该领域的理解,指出了钾离子电池研究中的关键问题,分类和突出了解决当前问题的设计策略,并最终提出了钾离子电池未来发展到实际应用的可能途径。综述中总结的策略和观点旨在为越来越多的研究人员探索下一代和高性能钾离子电池提供实用指导,也希望此类总结可适用于开发其他新型储能系统。

1.背景介绍

由于钾接近于锂的低标准氧化还原电位(-2.93 V相对于标准电极电位),从而导致钾离子电池具有相对较高的能量密度(图1a)。在地壳中钾的丰富的储存量(1.5 wt.%)导致钾离子电池具有低的成本(图1b),以及钾离子电池在电解质中具有快速的离子传输动力学都使得钾离子电池具有优越的前景。

与钠相比,虽然钾金属的价格相对较高,但钾盐(即电极制造的原料(K2CO3))的价格与Na2CO3的价格相似,同时与Li2CO3相比便宜得多。此外,铝箔可用作钾离子电池中的集流体从而替代锂离子电池中的铜箔,这不仅可以显着降低钾离子电池的价格,还可以减轻集流体的重量并解决过放电问题。虽然与锂(0.68Å)和钠(0.97Å)相比,钾具有最大的原子半径(1.38Å),但与Li+

(4.8Å)和Na+(4.6Å)相比,K+具有最小的斯托克斯半径(3.6Å)。在碳酸亚丙酯溶剂中(图1c),钾具有最高的离子迁移率和离子电导率。此外,通过分子动力学模拟研究,K+的扩散系数大约是Li+的扩散系数的3倍。基于上述优点,用K+代替Li+将使我们能够获得在不牺牲比容量的情况下提高倍率性能并实现高负载量电极。

微信截图_20190517111044.png

图1 钾离子电池的机遇与挑战。

2. 钾离子电池研究中存在的挑战

为了在钾离子电池中实现高能量密度和高循环稳定性,需要深入了解它们的界面化学,固体电极中的离子扩散,电解质的作用以及它们之间的相关性,以便适当地解决在钾离子电池中的存在主要特定问题/挑战(如图1E所示)。钾离子电池中存在的问题如下:

(1)固体电极中的低离子扩散性和较差的钾离子反应动力学。

(2)在嵌钾/脱钾过程中较大的体积变化。

(3)严重的副反应和电解质的消耗。

(4)枝晶生长。

(5)电池安全隐患。

(6)能量密度/功率密度有限。

了解六个主要问题之间的相互关系(图1E)可能是解决这些问题的最有效方法。在循环过程中,固体电极中的离子扩散性差可能导致反应动力学迟缓,这会影响电池的离子迁移和速率。此外,循环过程中的大体积变化可能会损坏电极的完整性并导致粉碎,这可能导致由于在新产生的固体电解质界面(SEI)层的形成而导致的进一步严重的副反应。就金属电极而言,由于不均匀的电子分布会加速副反应,这将导致枝晶生长并因此进一步导致SEI的破裂。 SEI层将在电极表面上不断的连续形成从而消耗电解质,增加反应过程中的极化,并最终导致容量衰减。

3. 应用于钾离子电池设计和改进的策略

1)用于改善K+反应动力学的纳米结构设计和工程

QQ截图20190517111116.png

图二 钾离子电池电极材料纳米结构以及纳米结构设计的优势和不足

2)通过使用碳基质来缓冲体积变化并增强导电性。

3)通过调节电子结构和增加杂原子掺杂的缺陷和空位来增强动力学。

QQ截图20190517111202.png

图3. 引用碳基质以及原子掺杂的策略

4)调控盐化学和电解质添加剂,以最大限度地减少副反应和K枝晶生长。

微信截图_20190517111221.png

图4. 电解质工程研究策略

5)通过电极设计提高能量密度

QQ截图20190517111300.png

图5 . 电极设计,电池体系设计,理论计算研究策略

6)新型电池系统设计以追求高能量/功率密度和安全的PIB电池。

7)采用理论DFT计算来预测最理想的电极材料,增强反应动力学并深入了解电化学机理。

4. 总结与展望

目前,钾离子电池已经引起了广泛研究者的兴趣,并且已经开发出具有优异电化学性能的电极材料(图4)。本篇文章最后,我们概述了钾离子电池未来研究的几个可能的方向,并希望我们的观点可能对钾离子电池研究领域起到一定的推动作用。

QQ截图20190517111317.png

图6 . (a) 已报道的钾离子电池不同材料的容量,电压及循环示意图(统计至2019年01月)(b) 钾离子电池研究中方法的总结示意图

1)开发先进的电极材料。与无定形碳电极相比,石墨碳电极具有良好的商业应用前景,因为其长时间稳定的反应平台且高于0.1 V(V vs. K+/K),从而避免了安全问题并保证了高工作电压和高能量密度。进一步的研究应考虑探索具有长稳定循环性和高振实密度的商业应用的石墨微结构。

对于非碳质阳极材料,合金基电极可以被认为是用于开发具有高重量和高体积能量密度的电极的替代物。电极材料的层压可能是一个很好的选择,它不仅可以缓冲体积变化,还可以提高电导率。将来,可以将层状材料结合到多功能主体中,例如具有足够的电解质润湿空间的其他二维材料,以增强其电化学性能。

对于阴极材料,能量密度是一个关键参数,不仅取决于工作平台,还取决于比容量。通常,代表性阴极包括转换型阴极和嵌入型阴极。对于嵌入型阴极,钾离子可以可逆地嵌入和脱出宿主基体中。几种化合物如层状,尖晶石,橄榄石型和金属硫化物一般被用作钾离子电池的阴极。然而,对钾离子电池阴极材料的研究尚处于初期阶段,目前已经研究了一些代表性的含Co和Mn的过渡金属氧化物,如K0.5MnO2和K0.6CoO2,但在循环过程中保持其结构稳定性仍然是不小的挑战。此外,普鲁士蓝及其类似物由于其开放的三维骨架仍然是很受欢迎和有前途的阴极材料,因为这对于需要可逆电化学嵌入/脱出的较大的碱金属离子如钾离子是非常有优势的。尽管如此,它们的低的容量仍然阻碍了它们的实际应用。因此,基于该三维框架进一步研究实现每个单元的多电子存储是开发高稳定性和高容量的阴极材料的不错的途径。就转化型阴极而言,它们总是经历氧化还原反应并伴随着循环期间化学键的断裂和形成。氟和氯化物,硫和硒基复合材料由于其高理论容量和体积容量而具有广泛的吸引力。然而因为它们的导电性差,可能发生严重的副反应,并且多硫化物溶解限制了它们的循环稳定性。开发合适的电解液是一个关键的方法,用于防止多硫化物溶解,改善长期循环稳定性和抑制枝晶生长。此外,钾金属电池体系中,K-O2电池体系目前看来最有发展前景,不仅因为其高能量密度,而且还因为其非常小的极化。

聚合物或有机电极材料有很大的潜力用于开发成低成本和安全性高的电池,进一步的研究需要对聚合物或有机系统中的钾离子嵌入/脱出的潜在机制和可逆性进行深入分析。

2)电解液优化。电解液的优化是开发高性能钾离子电池的首要任务。要使电解液有效,需要满足几个标准:(1)必须有助于形成均匀稳定的SEI层; (2)化学性质稳定,在工作电压窗口内不分解; (3)能够抑制过量的副反应。考虑到电解液添加剂和替代钾盐研究的进展,我们认为低氟含量的钾盐和电解质添加剂可以有效促进均匀稳定的SEI层,避免过度的副反应,并抑制枝晶生长。除了广泛使用FEC作为添加剂外,凭借Li金属阳极研究的成功经验,使用LiNO3和AlCl3提高界Li面稳定性,抑制枝晶生长,帮助形成均匀的SEI层等策略可为探索钾离子电池添加剂提供新的途径。研究用于钾离子电池的替代聚合物基电解质电解质可以抑制枝晶生长,避免过量的副反应并具有更好的形状柔韧性。基于醚基的电解液可以提高电池的高循环稳定性,并且高盐浓度体系为钾金属阳极的稳定性提供了可能的途径。然而对于电解液来说,从循环的电池体系中获得直观的研究证据一直具有挑战性,这使得难以揭示每种盐和溶剂在电解液中的作用。最近广为应用的原位技术,如原位拉曼光谱,低温电子显微镜和傅里叶红外光谱不仅可以了解SEI膜的化学成分,还可以了解每种元素的分布情况。因此可以有效帮助理解副反应和每种溶剂在循环过程中的作用。这可以指导我们采取更有效的电解质优化策略。

3)电池安全。尽管锂离子电池在过去已成功商业化,但是安全问题仍然是巨大的挑战。其有机易燃电解质在循环过程中会带来安全威胁,热失控的可能性被认为是引起安全问题的主要问题。 K-GIC系统的热失控研究表明,与商用锂石墨阳极相比,它将在较低温度下进入热失控,并产生较少的热量。基于对锂离子电池的研究经验,应该集中精力结合理论和实验证据来监测电池内部的温度分布。具体而言,三种可能的方法可以解决PIB的安全问题:a)具有高熔点和高热稳定的低成本隔膜; b)固体电解质和准固体电解质,如聚合物基电解质,可降低内部短路和热失控的风险; c)研究具有阻燃剂作为添加剂的液体电解质或电极材料,以提高热激活温度。

4)全电池设计。为了使电极材料面向未来的实际应用和商业化,需要构建和研究全电池系统。由于构建全电池系统总是需要基于清晰的反应机制和仔细计算/配对每个电极(阴极和阳极),这对于刚刚起步的钾离子电池研究是一个巨大的挑战。虽然已经报道的一些关于全钾离子电池的开创性工作(例如PB // Bi,PB // Super P,K0.7Fe0.5Mn0.5O2 //软碳,N掺杂多孔碳// PTCDA和石墨// K2Mn [Fe(CN)6])具有合理的容量,甚至其中一些全电池具有比钠离子全电池更高的能量和功率密度,但它们的能量输出和长循环的稳定性使它们离实际应用还非常远。对钾离子全电池的进一步研究应该将侧重于全电池装配技术以及针对每个单独电极的电化学机制和机理的详细分析和优化。

5)高通量计算设计和模拟。高通量计算材料设计依赖于第一原理方法,目的是通过求解量子力学和统计力学的基本方程来计算材料的性质。考虑到成本,安全性,容量,扩散动力学,循环稳定性和合适的电解质等多种方面,探索优异的电极材料具有挑战性,因为其严格的实验条件,这些参数可能难以评估。该计算筛选方法可以基于对具有少量物理参数的候选材料进行第一性原理从头计算来解决电子结构问题,从而可以同时解决所有上述问题。此外,特别是在钾离子电池研究的初始阶段,建立可靠的数据库以提供有效搜索候选电极材料和电解质的指南是很有意义的,这将有利于简化随后的实验程序和成本。


特别声明:北极星转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。

凡来源注明北极星*网的内容为北极星原创,转载需获授权。
展开全文
打开北极星学社APP,阅读体验更佳
2
收藏
投稿

打开北极星学社APP查看更多相关报道

今日
本周
本月
新闻排行榜

打开北极星学社APP,阅读体验更佳